The Mystery of Dust in Early-Type Galaxies

Paul Martini
The Ohio State University

with Thaisa Storchi-Bergmann (UFGRS) and Daniel Dicken (IAP)

Discovery

A few, spectacular examples were well known

Dust quite common in HST images (~50%)

Dusty ellipticals also tended to be AGN

N4374 N4552 N5102 N5322

van Dokkum & Franx (1995)

Creation and Destruction

Baryon Budget for our Galaxy

Creation/Growth:

Evolved stars
Supernovae
Cold, neutral ISM

Destruction:

Supernovae Sputtering Grain-grain collisions $(\tau_{dust} \sim 0.4 \text{ Gyr})$

Draine (2009)

Dust in Early Types

Creation/Growth

- Dust formation in stellar winds
- Supernovae (mostly Type Ia)?
- Not much (or no) cold, neutral medium
- External accretion of gas-rich satellites

Destruction

Sputtering

Demographics

Ho et al. (1997)

$$S = \left[\frac{I}{I \otimes P}\right] \otimes P^{t}$$

Pogge & Martini (2002)

HST Observations

Simões Lopes et al. (2007)

12 of 34 pairs

active inactive active

active inactive

active inactive

HST Results

Observations of early-types show:

- 100% (34) of LINERs and Seyferts have circumnuclear dust
- 26% (9) of inactive galaxies have dust
- LINERs and Seyferts constitute ~50% of all earlytype galaxies, so ~60% of early-type galaxies have circumnuclear dust

Where did this dust originate?
Is the presence of nuclear activity important?

Spitzer Observations

4.5 μm

5.8 μm

8.0 μm

24 μm

70 μm

160 μm

Paul Martini – Berkeley - 23 April 2013

Active Early-Type Galaxies at 160μm

Martini et al. (2012)

Inactive Early-Type Galaxies at 160μm

Inactive Early-Type Galaxies

Dust Model

Parameters are:

U_{min} ISRF for diffuse component

γ fraction exposed to higher ISRF

q_{PAH} PAH fraction

$$\label{eq:Mdust} M_{\rm dust} = \frac{\Psi}{\langle U \rangle} \left(\langle \nu F_{\nu} \rangle_{24} + \langle \nu F_{\nu} \rangle_{71} + \langle \nu F_{\nu} \rangle_{160} \right) D^2.$$

Draine & Li (2007)

Dust Mass Distribution

Dust Destruction Time

Dust and Activity

Strong correlation between dust and activity

Are AGN responsible?

No, because:

- Many LINERs are primarily powered by old stellar populations, rather than AGN
- While all early-type AGN hosts have dust, many others with dust are consistent with other types of emission-line galaxies

Emission lines and activity are likely byproducts of dust (and gas), rather than the cause

Is the origin all internal?

Potential Dust Settling Sequence:

Proposed by Tran et al. (2001), Verdoes Kleijn & de Zeeuw (2005)

Is the origin all internal?

No, because:

- There are order of magnitude differences in dust mass between otherwise identical galaxies
- Gas and stellar kinematics are misaligned
- Dust morphology

Davis et al. (2012)

Is the origin all external?

We need to determine:

- What 'donors' have enough dust?
- What is their merger rate?

Our constraint is that 60% of early-type galaxies have dust:

$$f_{dust} = \Re_{merg} \tau_{dust} = 0.6$$
 where $\tau_{dust} < 2 \times 10^7 \ yr$

Theoretical Merger Rates

Based on Stewart et al. (2009)

Is the origin all external?

No, because:

Dusty fraction is predicted to be:

$$f_{dust} = \Re_{merg} \tau_{dust} =$$

$$(0.07 - 0.2) \ 0.02 = 0.0014 - 0.004$$

Compare to the observed dusty fraction:

$$f_{dust} = 0.6$$

Dust destruction timescale would need to be at 150-430x longer to explain observations

Observed Merger Rates

······ 1:1→30:1

 $----1:1 \rightarrow 10:1$

5x discrepancy

Lotz et al. (2011)

Theoretical Merger Rates

5x Higher

Based on Stewart et al. (2009)

Destruction Time?

Milky Way value is much higher $\tau_{dust} = 0.4$ Gyr (5x higher) Early-type galaxies have lower SN rates

Plausibly within a factor of a few for the highest predicted merger rates

Hybrid Solution

Milky Way appears to produce most (~90%) of its dust in the cold, neutral ISM

If the entire dust mass were produced in the cold ISM, then the steady-state value is:

$$M_{dust} = \varepsilon_{dg} M_{gas}$$

Typical ETGs have 10⁷⁻⁸ M_☉ of neutral gas, consistent with satellite accretion

They should have a steady-state $M_{dust} = 10^{5-6} M_{\odot}$, in agreement with observations

The neutral gas is exhausted on ~Gyr timescales due to star formation and/or evaporation

Summary

- The majority (~60%) of early-type galaxies have at least 10⁵ M_☉ of dust
- The remainder have at least an order of magnitude less
- The dust mass distribution rules out a purely internal origin, while the dust destruction timescale, mass, and merger rate rule out a purely external origin
- Continued dust production in the (accreted) cold, neutral ISM could resolve the discrepancy
- The 'active' lifetime would be similarly long-lived, namely several Gyr

Dust Properties

Low PAH fractions relative to the Milky Way Very little hot dust due to star formation/AGN More intense average radiation fields

Circumstellar Dust

Circumstellar Dust

Circumstellar dust is always present